Logo Search packages:      
Sourcecode: rmatrix version File versions  Download package

lgCMatrix.c

#include "lgCMatrix.h"

SEXP lgCMatrix_validate(SEXP x)
{
   SEXP pslot = GET_SLOT(x, Matrix_pSym),
      islot = GET_SLOT(x, Matrix_iSym);
    int j,
      ncol = length(pslot) - 1,
      *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),
      nrow,
      *xp = INTEGER(pslot),
      *xi = INTEGER(islot);

    nrow = dims[0];
    if (length(pslot) <= 0)
      return mkString(_("slot p must have length > 0"));
    if (xp[0] != 0)
      return mkString(_("first element of slot p must be zero"));
    if (length(islot) != xp[ncol])
      return mkString(_("last element of slot p must match length of slot i"));
    for (j = 0; j < ncol; j++) {
      if (xp[j] > xp[j+1])
          return mkString(_("slot p must be non-decreasing"));
    }
    for (j = 0; j < length(islot); j++) {
      if (xi[j] < 0 || xi[j] >= nrow)
          return mkString(_("all row indices must be between 0 and nrow-1"));
    }
    if (csc_unsorted_columns(ncol, xp, xi)) {
      csc_sort_columns(ncol, xp, xi, (double *) NULL);
    }
    return ScalarLogical(1);
}

/** 
 * C := op(A) %*% op(B) + beta ^ C for logical sparse column-oriented matrices
 * 
 * @param tra nonzero if A is to be transposed
 * @param trb nonzero if B is to be transposed
 * @param m number of rows in C
 * @param n number of columns in C
 * @param k number of columns in A if tra == 0, otherwise number of
 *          rows in A
 * @param ai vector of row indices of TRUE elements in A
 * @param ap column pointers for A
 * @param bi vector of row indices of TRUE elements in B
 * @param bp column pointers for B
 * @param beta if non-zero existing TRUE elements in C are retained
 * @param ciP SEXP whose INTEGER part is the column indices of TRUE
 * elements in C (not used if beta == 0).
 * @param cp column pointers for C
 *
 * @return SEXP whose INTEGER part is the column indices of TRUE
 * elements in the product.  Note that the contents of cp may be modified.
 */
SEXP Matrix_lgClgCmm(int tra, int trb, int m, int n, int k,
                 const int ai[], const int ap[],
                 const int bi[], const int bp[],
                 int beta, SEXP CIP, int cp[])
{
    int cnnz = cp[n], extra = 0;
    int *ci, i, j, prot = 0;  /* prot is the number of PROTECTs to UNPROTECT */
    
    if (beta) {
      ci = INTEGER(CIP);
    } else {                  /* blank the C matrix */
      for (j = 0; j <= n; j++) cp[j] = 0;
      cnnz = 0;
      ci = (int *) NULL;
    } 

    if (tra) {                /* replace ai and ap by els for transpose */
      int nz = ap[m];
      int *Ai = Calloc(nz, int),
          *aj = expand_cmprPt(m, ap, Calloc(nz, int)),
          *Ap = Calloc(k + 1, int);
      
      triplet_to_col(m, k, nz, aj, ai, (double *) NULL,
                   Ap, Ai, (double *) NULL);
      Free(aj);
      ai = Ai; ap = Ap;
    }

    if (trb) {                /* replace bi and bp by els for transpose */
      int nz = bp[k];
      int *Bi = Calloc(nz, int),
          *bj = expand_cmprPt(k, bp, Calloc(nz, int)),
          *Bp = Calloc(n + 1, int);
      
      triplet_to_col(k, n, nz, bj, bi, (double *) NULL,
                   Bp, Bi, (double *) NULL);
      Free(bj);
      bi = Bi; bp = Bp;
    }

    for (j = 0; j < n; j++) { /* col index for B and C */
      int ii, ii2 = bp[j + 1];
      for (ii = bp[j]; ii < ii2; ii++) { /* index into bi */
          int jj = bi[ii]; /* row index of B; col index of A */
          int i, i2 = ap[jj + 1]; /* index into ai */
          for (i = ap[jj]; i < i2; i++)
            if (check_csc_index(cp, ci, ai[i], j, -1) < 0) extra++;
      }
    }

    if (extra) {
      int ntot = cnnz + extra;
      int *Cp = Calloc(n + 1, int),
          *Ti = Calloc(ntot, int),
          *rwInd = Calloc(m, int), /* indicator of TRUE in column j */
          pos = 0;
      
      Cp[0] = 0;
      for (j = 0; j < n; j++) {
          int ii, ii2 = bp[j + 1];
                        
          AZERO(rwInd, m);    /* initialize column j of C */
          for (i = cp[j]; i < cp[j+1]; i++) rwInd[ci[i]] = 1;

          Cp[j + 1] = Cp[j];
          for (ii = bp[j]; ii < ii2; ii++) { /* index into bi */
            int jj = bi[ii]; /* row index of B; col index of A */
            int i, i2 = ap[jj + 1]; /* index into ai */
            for (i = ap[jj]; i < i2; i++) rwInd[ai[i]] = 1;
          }
          for (i = 0; i < m; i++)
            if (rwInd[i]) {Cp[j + 1]++; Ti[pos++] = i;}
      }
      PROTECT(CIP = allocVector(INTSXP, Cp[n])); prot++;
      Memcpy(INTEGER(CIP), Ti, Cp[n]);
      Memcpy(cp, Cp, n + 1);
      Free(Cp); Free(Ti); Free(rwInd);
    }

    if (tra) {Free(ai); Free(ap);}
    if (trb) {Free(bi); Free(bp);}
    UNPROTECT(prot);
    return CIP;
}
          
SEXP lgCMatrix_lgCMatrix_mm(SEXP a, SEXP b)
{
    SEXP ans = PROTECT(NEW_OBJECT(MAKE_CLASS("lgCMatrix")));
    int *adims = INTEGER(GET_SLOT(a, Matrix_DimSym)),
      *bdims = INTEGER(GET_SLOT(b, Matrix_DimSym)),
      *cdims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2));
    int k = adims[1], m = adims[0], n = bdims[1];
    int *cp = INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP, n + 1));
    
    if (bdims[0] != k)
      error(_("Matrices are not conformable for multiplication"));
    cdims[0] = m; cdims[1] = n;
    SET_SLOT(ans, Matrix_iSym,
           Matrix_lgClgCmm(0, 0, m, n, k,
                       INTEGER(GET_SLOT(a, Matrix_iSym)),
                       INTEGER(GET_SLOT(a, Matrix_pSym)),
                       INTEGER(GET_SLOT(b, Matrix_iSym)),
                       INTEGER(GET_SLOT(b, Matrix_pSym)),
                       0, (SEXP) NULL, cp));
    UNPROTECT(1);
    return ans;
}

SEXP lgCMatrix_trans(SEXP x)
{
    SEXP xi = GET_SLOT(x, Matrix_iSym);
    SEXP ans = PROTECT(NEW_OBJECT(MAKE_CLASS("lgCMatrix")));
    int *adims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2)),
      *xdims = INTEGER(GET_SLOT(x, Matrix_DimSym)),
      nz = length(xi);
    int *xj = Calloc(nz, int);
    SEXP adn = ALLOC_SLOT(ans, Matrix_DimNamesSym, VECSXP, 2),
      xdn = GET_SLOT(x, Matrix_DimNamesSym);
    
    adims[1] = xdims[0]; adims[0] = xdims[1];
    SET_VECTOR_ELT(adn, 0, VECTOR_ELT(xdn, 1));
    SET_VECTOR_ELT(adn, 1, VECTOR_ELT(xdn, 0));
    triplet_to_col(adims[0], adims[1], nz, 
               expand_cmprPt(xdims[1], INTEGER(GET_SLOT(x, Matrix_pSym)), xj),
               INTEGER(xi), (double *) NULL,
               INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP,  adims[1] + 1)),
               INTEGER(ALLOC_SLOT(ans, Matrix_iSym, INTSXP,  nz)),
               (double *) NULL);
    Free(xj);
    UNPROTECT(1);
    return ans;
}

/** 
 * Replace C by AA' + beta*C or A'A + beta*C
 * 
 * @param up Indicator of upper/lower triangle in the symmetric sparse matrix
 * @param tra Transpose, in the sense of dsyrk.  That is, tra TRUE indicates A'A
 * @param n size of the product matrix
 * @param k number of columns in A if tra is FALSE, otherwise the number of rows
 * @param ai row indices for A
 * @param ap column pointers for A
 * @param beta TRUE if existing elements in C are to be preserved
 * @param CIP SEXP whose INTEGER part is the row indices of C (not used if beta is FALSE)
 * @param cp column pointers for C
 * 
 * @return SEXP whose INTEGER part is the updated row indices of C
 */
SEXP Matrix_lgCsyrk(int up, int tra, int n, int k, const int ai[], const int ap[],
                int beta, SEXP CIP, int cp[])
{
    int extra = 0, i, ii, j, prot = 0;
    int *ci, cnnz = cp[n];

    if (beta) {
      ci = INTEGER(CIP);
    } else {                  /* blank the C matrix */
      for (j = 0; j <= n; j++) cp[j] = 0;
      cnnz = 0;
      ci = (int *) NULL;
    } 
    
    if (tra) {                /* replace ai and ap by els for transpose */
      int nz = ap[n];
      int *Ai = Calloc(nz, int),
          *aj = expand_cmprPt(n, ap, Calloc(nz, int)),
          *Ap = Calloc(k + 1, int);
      
      triplet_to_col(n, k, nz, aj, ai, (double *) NULL,
                   Ap, Ai, (double *) NULL);
      Free(aj);
      ai = Ai; ap = Ap;
    }

    for (j = 0; j < k; j++) {
      int i2 = ap[j + 1];
      for (i = ap[j]; i < i2; i++) {
          int r1 = ai[i];
          if (r1 < 0 || r1 >= n)
            error(_("row %d not in row range [0,%d]"), r1, n - 1);
          for (ii = i; ii < i2; ii++) {
            int r2 = ai[ii];
            if (r2 < 0 || r2 >= n)
                error(_("row %d not in row range [0,%d]"), r2, n - 1);
            if (check_csc_index(cp, ci, up?r1:r2, up?r2:r1, -1) < 0)
                extra++;
          }
      }
    }

    if (extra) {
      int ntot = cnnz + extra;
      int *Ti = Memcpy(Calloc(ntot, int), ci, cnnz),
          *Tj = expand_cmprPt(n, cp, Calloc(ntot, int)),
          *Ci = Calloc(ntot, int),
          pos = cnnz;
      
      for (j = 0; j < k; j++) {
          int i2 = ap[j + 1];
          for (i = ap[j]; i < i2; i++) {
            int r1 = ai[i];
            for (ii = i; ii < i2; ii++) {
                int r2 = ai[ii];
                int row = up ? r1 : r2, col = up ? r2 : r1;
                if (r2 < r1) error("[j,i,ii,r1,r2] = [%d,%d,%d,%d,%d]",
                               j,i,ii,r1,r2);
                if (check_csc_index(cp, ci, row, col, -1) < 0) {
                  Ti[pos] = row;
                  Tj[pos] = col;
                  pos++;
                }
            }
          }
      }
      
      triplet_to_col(n, n, pos, Ti, Tj, (double *) NULL,
                   cp, Ci, (double *) NULL);
      PROTECT(CIP = allocVector(INTSXP, cp[n])); prot++;
      Memcpy(INTEGER(CIP), Ci, cp[n]);
      Free(Ti); Free(Tj); Free(Ci);
    }
    
    if (tra) {Free(ai); Free(ap);}
    UNPROTECT(prot);
    return CIP;
}

/** 
 * Create the cross-product or transpose cross-product of a logical
 * sparse matrix in column-oriented compressed storage mode.
 * 
 * @param x Pointer to a lgCMatrix
 * @param trans logical indicator of transpose, in the sense of dsyrk.
 * That is, trans == TRUE is used for crossprod.
 * @param C 
 * 
 * @return An lsCMatrix of the form if(trans) X'X else XX'
 */
SEXP lgCMatrix_crossprod(SEXP x, SEXP trans, SEXP C)
{
    int tra = asLogical(trans);
    int *adims, *xdims = INTEGER(GET_SLOT(x, Matrix_DimSym));
    int k = xdims[tra ? 0 : 1], n = xdims[tra ? 1 : 0];
    
    if (C == R_NilValue) {
      SEXP ans = PROTECT(NEW_OBJECT(MAKE_CLASS("lsCMatrix")));

      adims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2));
      adims[0] = adims[1] = n;
      SET_SLOT(ans, Matrix_uploSym, mkString("U"));
      SET_SLOT(ans, Matrix_iSym,
             Matrix_lgCsyrk(1, tra, n, k,
                        INTEGER(GET_SLOT(x, Matrix_iSym)),
                        INTEGER(GET_SLOT(x, Matrix_pSym)),
                        0, R_NilValue,
                        INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP, n + 1))));
      UNPROTECT(1);
      return ans;
    }
    adims = INTEGER(GET_SLOT(C, Matrix_DimSym));
    if (adims[0] != n || adims[1] != n)
      error(_("Dimensions of x and y are not compatible for crossprod"));
    SET_SLOT(C, Matrix_iSym,
           Matrix_lgCsyrk(CHAR(asChar(GET_SLOT(C, Matrix_uploSym)))[0] == 'U',
                      tra, n, k,
                      INTEGER(GET_SLOT(x, Matrix_iSym)),
                      INTEGER(GET_SLOT(x, Matrix_pSym)),
                      1, GET_SLOT(C, Matrix_iSym),
                      INTEGER(GET_SLOT(C, Matrix_pSym))));
    return C;
}

/** 
 * Special-purpose function that returns a permutation of the columns
 * of a lgTMatrix for which nrow(x) > ncol(x).  The ordering puts
 * columns with fewer entries on the left.  Once a column has been
 * moved to the left the rows in where that column is TRUE are removed
 * from the counts.
 * 
 * @param x Pointer to an lgTMatrix object
 * 
 * @return 0-based permutation vector for the columns of x
 */
SEXP lgCMatrix_picky_column(SEXP x)
{
    int *xdims = INTEGER(GET_SLOT(x, Matrix_DimSym));
    int *xi = INTEGER(GET_SLOT(x, Matrix_iSym)),
      *xp = INTEGER(GET_SLOT(x, Matrix_pSym)),
      m = xdims[0], n = xdims[1];
    SEXP ans = PROTECT(allocVector(INTSXP, n));
    int *actr = Calloc(m, int),
      *actc = Calloc(n, int),
      cj, i, j, mincount, minloc, pos;

    for (i = 0; i < m; i++) actr[i] = 1;
    mincount = m + 1;
    for (j = 0; j < n; j++) {
      cj = xp[j + 1] - xp[j];
      actc[j] = 1;
      if (cj < mincount) {
          mincount = cj;
          minloc = j;
      }
    }
    
    pos = 0;
    while (pos < n) {
      INTEGER(ans)[pos++] = minloc;
      actc[minloc] = 0;
      for (i = xp[minloc]; i < xp[minloc + 1]; i++) actr[xi[i]] = 0;
      mincount = m + 1;
      for (j = 0; j < n; j++) {
          if (actc[j]) {
            cj = 0;
            for (i = xp[j]; i < xp[j + 1]; i++) {
                if (actr[xi[i]]) cj++;
                if (cj < mincount) {
                  mincount = cj;
                  minloc = j;
                }
            }
          }
      }
    }

    Free(actr); Free(actc);
    UNPROTECT(1);
    return ans;
}

Generated by  Doxygen 1.6.0   Back to index